

Qualitative Spatial Reasoning using Answer Set Programming

George Baryannis

Department of Computer Science University of Huddersfield, UK

ThinkSpatial • spatial@ucsb • 21 April 2020

About UoH

- Located in West Yorkshire in North England
- Department of Computer Science
 - ~50 academic members of staff
 - 5 Research Centres
- Centre for Planning, Autonomy and Representation of Knowledge
 - Led by Profs Lee McCluskey and Grigoris Antoniou

ASP

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Gen. Encoding

Conclusion

TEF

Gold

14 members

QSR

Outline

Motivation

Teaching

Excellence

Framework

University of HUDDERSFIELD Inspiring global professionals

Outline

Outline

Motivation

- Motivation
- Qualitative Spatial Reasoning
- Answer Set Programming
- Trajectory Calculus

QSR

- Generalised Encoding
- Current and Future Steps

ASP

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Gen. Encoding

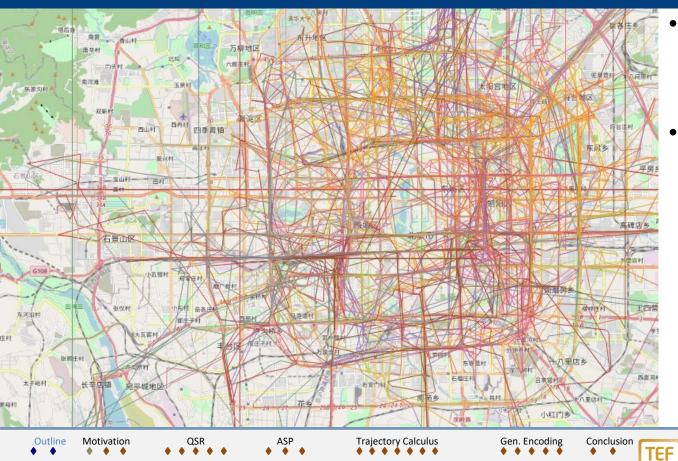
Conclusion

TEF

Gold

Teaching

Excellence


Framework

3

HEA

Reasoning with Trajectories

University of HUDDERSFIELD Inspiring global professionals

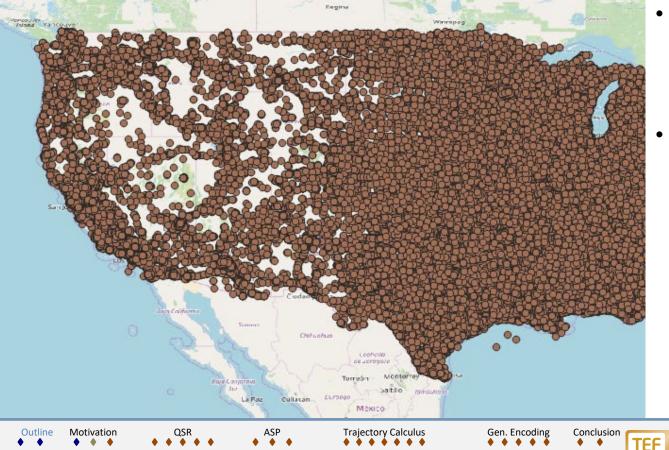
- T-Drive dataset: trajectories generated by 10,357 taxis in Beijing
- Motivating Query MQ1: Find areas with maximum concentration of intersecting trajectories, with trajectories also passing through one of the roads surrounding the **Forbidden City**

Global Teaching

Excellence Award

Teaching

Excellence


Framework

Gold

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Reasoning with Regions

University of HUDDERSFIELD Inspiring global professionals

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

- ASR dataset: locations of more than 125,000 registered antenna structures across the USA
- Motivating Query MQ2: Find the minimum number of antennas required to cover a particular area, avoiding interference by ensuring that overlapping regions do not use the same frequencies

Teaching

Excellence

Framework

Gold

Motivation

Outline

Motivation

- Common features of motivating queries
 - Qualitative aspects
 - Intersecting trajectories

ASP

QSR

- Overlapping regions
- Other, non-qualitative reasoning
 - Maximum concentration, pass through particular location
 - Antenna coverage and minimum number of frequencies
- Need for an approach to represent and reason with such knowledge that integrates both qualitative and nonqualitative aspects

Gen. Encoding

Conclusion

TEF

Gold

Teaching

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

6

Qualitative Reasoning

- Less precise but more comprehensible
 - Compare rather than measure

ASP

QSR

Outline

Motivatior

- Motivated by human cognition
 - Humans rarely think using precise quantities
 - Bring human and machine thinking closer
 - Increase interpretability of reasoning results
- More suitable than quantitative reasoning when

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

- Knowledge about the environment is incomplete or imprecise
- Understandable interactions and acceptable explanations are more important than high precision

Gen. Encoding

Conclusion

TEF

Teaching

7

Qualitative Spatial Reasoning

Focus on spatial (and temporal) domains

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

- Rich structures to exploit
- Quite important for many applications
 - naval traffic monitoring

ASP

QSR

Outline

Motivation

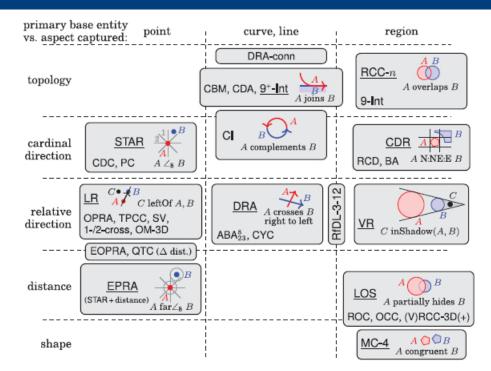
- warehouse process optimisation
- robot manipulation
- Probably the most well-researched domains for qualitative reasoning
 - Well over 40 different formalisms, called qualitative (spatial) calculi

Gen. Encoding

Conclusion

TEF

Gold


Global **Teaching** Excellence Award

University of

Inspiring global professionals

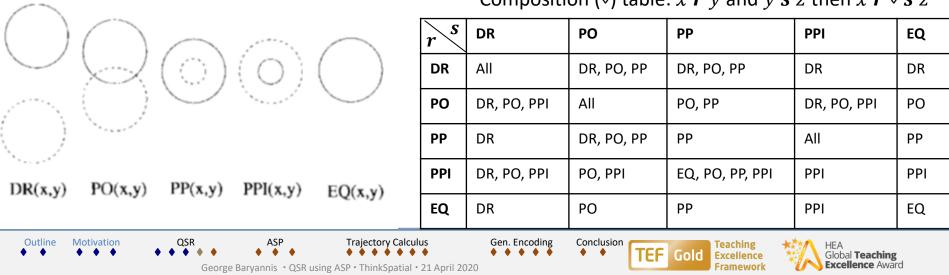
Qualitative Spatial Calculi

Dylla et al. (2017)

QSR

Trajectory Calculus ASP George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020 Gen. Encoding Conclusion ٠

٠


Teaching TEF Gold Excellence Framework

9

Region Connection Calculus (RCC)

- Recall MQ2: Find the minimum number of antennas [...] by ensuring • that **overlapping regions** do not use the same frequencies
- RCC allows reasoning about qualitative relations between regions on ۲ space
 - RCC-5 has 5 jointly exhaustive and pairwise disjoint base relations

Composition (*) table: x r y and y s z then x r * s z

University of

HUDDERSFIELD Inspiring global professionals

Reasoning Tool Support

- Two toolkits support multiple qualitative spatial calculi
 - <u>GQR</u>

Outline

Motivation

QSR

ASP

- <u>SparQ</u>
- Both support standard qualitative reasoning tasks
 - Such as deciding whether a set of qualitative constraints (relations) over a domain are consistent
- Both are dedicated qualitative reasoning tools

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Neither supports reasoning beyond qualitative calculi

Gen. Encoding

Conclusion

TEF

Gold

Answer Set Programming (ASP)

• ASP is an approach to problem solving that is

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

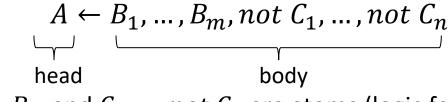
ASP

Outline

- **Declarative**: describe the problem, not how to solve it
- Logic-based: knowledge is represented in the form of logic formulas
- Rule-based: logic formulas are arranged as rules with premises and conclusions
- ASP allows for solving hard search and optimisation problems
 - Reasoning with qualitative relations is one such problem

Gen. Encoding

Conclusion


TEF

Gold

ASP Logic Programs

• An ASP logic program is a set of rules of the form

- A, B_1, \dots, B_m and $C_1, \dots, not C_n$ are atoms (logic formulas that cannot be split further)
- "←" denotes "if" and "," denotes "and"

ASP

QSR

Outline

- "not" denotes "negation-as-failure" (false due to failing to prove true)
- Semantics: A is true if B_1, \ldots, B_m are true and C_1, \ldots, C_n cannot be proven to be true

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

• If A is missing, semantics: it is not possible for B_1, \ldots, B_m to be true and for C_1, \ldots, C_n to not be provable to be true

Gen. Encoding

Conclusion

TEF

Gold

13

cellence Award

ASP Reasoning

$$A \leftarrow B_1, \dots, B_m, not \ C_1, \dots, not \ C_n$$

• Reasoning in ASP follows these steps:

ASP

Outline

Motivatior

- 1. Assign true or false to atoms one after the other
- 2. Propagate values from bodies to heads

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

- 3. If contradicting results, negate the assignment(s) that led to this
- 4. Repeat Steps 1-3 until all atoms have been assigned value

Gen. Encoding

Conclusion

TEF

Gold

Teaching

5. An **answer set** is the set of all atoms assigned to true

14

Qualitative Reasoning with Trajectories

Outline

- Recall MQ1: Find areas with maximum concentration of intersecting trajectories [...]
- We need a qualitative calculus capable of (efficiently) reasoning about relations between trajectories
- QTC (Weghe et al. 2016) focuses on detailed representation at the expense of efficient reasoning
 - Up to 81 relations to account for location, velocity, acceleration and motion azimuth of moving point objects

Gen. Encoding

Conclusion

TEF

 Proposed solution: simplify trajectory model, viewing trajectories as complete paths

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

ASP

15

Proposed Simplifications

Outline

- Trajectories modelled as sequences of *regions* on a *partitioned* map
 - Given a map M, a partitioning R of M is defined as a set of non-overlapping regions r_i , such that $M = \bigcup_{r_i \in R} r_i$
- Trajectories are treated as whole paths and not on the basis of individual points
- Individual features of moving objects such as velocity and acceleration are not taken into account

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Gen. Encoding

Conclusion

TEF

Trajectory Calculus TC-6

Outline

QSR

ASP

- Simplest case: trajectories are arbitrary, but consecutive regions within them must be different
- A trajectory is allowed to start and end at the same region
 - Given a partitioning R, a trajectory T is defined as a sequence of regions $(t_1, t_2, ..., t_n)$, $n \ge 2$, where $t_i \ne t_{i+1}$, $1 \le i < n$
- Possible associations between two trajectories are captured by 6 base relations
 - Jointly exhaustive, pairwise disjoint and symmetric

Gen. Encoding

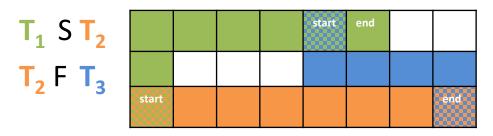
Conclusion

TEF

Gold

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020


TC-6 Base Relations

Relation	Interpretation	Illustration
Equal (Eq)	T_1 and T_2 are equal (identical trajectories)	Image: Start Image: Start<
Alternative (Alt)	T ₁ and T ₂ are alternative (different trajectories for the same start and end regions)	Image: Start I
Start (S)	T ₁ and T ₂ start at the same region (but end at different regions)	Image: Start I
Finish (F)	T ₁ and T ₂ end at the same region (but start at different regions)	start Image: S
Intersect (I)	T ₁ and T ₂ intersect (different start and end regions but at least one common region)	start
Disjoint (Dis)	T ₁ and T ₂ are disjoint (no common regions)	start end start end start end start end

TC-6 Composition Table

 $T_1 \mid T_3$

 T_1 Dis T_3

TEF

Gold

Excellence

Framework

Global **Teaching Excellence** Award

Relations	Eq	Alt	S	F	1	Dis
Eq	Eq	Alt	S	F	I	Dis
Alt	Alt	Eq, Alt	S	F	I, Dis	l, Dis
S	S	S	Eq, Alt, S	l, Dis	F, I, Dis	F, I, Dis
Outline Motivation QSR ASP Trajectory Calculus Gen. Encoding Conclusion Teaching teaching						

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Encoding TC-6 in ASP

- Trajectories as **predicates** traj(1), ... traj(n)
- Base relations as predicates eq(X,Y), alt(X,Y), s(X,Y), f(X,Y), i(X,Y), dis(X,Y)
- Ensure **only one** relation per pair of trajectories using a choice rule: $\{eq(X, Y); ...; dis(X, Y)\} = 1 \leftarrow traj(X), traj(Y), X < Y$
 - ; denotes disjunction

QSR

ASP

Outline

Motivation

- For each **composition table entry**, one integrity constraint rule of the form $\leftarrow r_a(X,Y), r_b(Y,Z), not r_i(X,Z), \dots, not r_n(X,Z)$
 - Read as: it is not possible for relation r_a to hold between trajectories X and Y and r_b to hold between Y and Z and for none of the relations $r_i \dots r_n$ in the corresponding cell in the composition table

Gen. Encoding

Conclusion

TEF

Gold

Teaching

- e.g. $\leftarrow s(X, Y), f(Y, Z), not i(X, Z), not dis(X, Z)$

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Reasoning with the ASP encoding

- The ASP encoding can determine whether a set of relations between trajectories is consistent
 - e.g. s(1,2), f(2,3), eq(1,3) is inconsistent, since it violates the constraint $\leftarrow s(X,Y), f(Y,Z), not i(X,Z), not dis(X,Z)$
 - e.g. s(1,2), f(2,3) is consistent and there are two answer sets, one with i(1,3) and one with dis(1,3)
- Additional **non-qualitative** rules can be added

Outline

- e.g. for MQ1, add a rule $crosses(X, Lat, Long) \leftarrow traj(X), point(Lat, Long)$

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

ASP

checking whether a trajectory passes through a particular point

Gen. Encoding

Conclusion

TEF

Teaching

21

ASP

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Outline

- The previous encoding is only good for TC-6
 - What about other qualitative calculi, like RCC-5 for MQ2?
- Need for a generalised encoding that can be used for any standard qualitative calculus
 - This encoding can then be improved based on particular properties of each calculus

Gen. Encoding

Conclusion

TEF

Domain and Base Relations

- **Domain elements** as predicates *element*(1), ... *element*(n)
 - e.g. one such predicate for each known region for RCC-5
- Base **relations** as predicates *relation(name)*

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Outline

Motivatior

– e.g. for RCC-5 relation(dr), relation(po), relation(pp), relation(ppi), relation(eq)

Gen. Encoding

Conclusion

TEF

- This can also be written using **term pooling** as

relation(dr; po; pp; ppi; eq)

cellence Award

Composition Table

- One predicate for each cell in the table with three arguments
 - Row relation

QSR

ASP

Outline

- Column relation
- Valid relation for the composition of the latter two

Gen. Encoding

Conclusion

TEF

Gold

Teaching

Excellence

Frameworl

- e.g. table(pp, eq, (pp))
 table(pp, dr, (dr))
 table(pp, po, (dr; po; pp))
 table(pp, pp, (pp))
 table(pp, ppc, (eq; dr; po; pp; ppc))

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Trajectory Calculus

24

Search Space

- Predicate *true*(*X*, *R*, *Y*) denoting that relation *R* holds for the ordered pair of elements (*X*, *Y*)
- Choice rule

Outline

 $\{true(X, R, Y): relation(R)\} = 1 \leftarrow element(X), element(Y), X! = Y$

- Rule head means that if true(X, R, Y) holds, there is exactly one R that makes relation(R) hold
- X! = Y instead of X < Y because there are calculi where if $true(X, R_1, Y)$ and $true(Y, R_2, X), R_1 \neq R_2$
- To enforce the composition table:

ASP

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

QSR

- $\leftarrow true(X, R_1, Y), true(Y, R_2, Z), not true(X, R_{out}, Z): table(R_1, R_2, R_{out})$
 - Meaning that it is not possible for R_1 and R_2 to hold for (X, Y) and (Y, Z) and for none of the R_{out} in the corresponding table predicates to hold

Gen. Encoding

Conclusion

TEF

Gold

25

Input Constraints

- Predicate *constraint*(*X*, *R*, *Y*) denoting that the pair (*X*, *Y*) is involved in a constraint, with *R* as a possible relation for the pair
- The generalised encoding can perform consistency checks as before
 - e.g. constraint(1, pp, 2), constraint(2, pp, 3), constraint(1, dr, 3) is inconsistent, since table(pp, pp, (pp))
- Additional **non-qualitative** rules can be added

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Trajectory Calculus

- e.g. for MQ2, add a rule

ASP

QSR

Outline

 \leftarrow true(X, overlaps, Y), frequency(X, F₁), frequency(Y, F₂), F₁ = F₂ ensuring that overlapping regions don't share the same frequency

Gen. Encoding

Conclusion

TEF

26

Current Steps

ASP

Outline

- Ensuring that the generalised encoding is indeed capable of modelling all qualitative calculi
 - Also considering calculus-specific improvements

Gen. Encoding

Conclusion

TEF

Teaching

• Experiments to compare efficiency of ASP implementations against GQR and SparQ

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

Future Steps

Outline

Motivation

- Implement converter from GQR and SparQ to ASP
- Develop a toolkit that guides the user through
 - encoding a problem instance in ASP

Trajectory Calculus

George Baryannis • QSR using ASP • ThinkSpatial • 21 April 2020

- solving the problem
- explaining the solution

ASP

QSR

 Explore additional case studies requiring a combination of qualitative and non-qualitative reasoning

Conclusion

TEF

Gold

Teaching

Gen. Encoding

Questions?

Carlos Carlos Charles

g.bargiannis@hud.ac.uk

References

- BARYANNIS, G., TACHMAZIDIS, I., BATSAKIS, S., ANTONIOU, G., ALVIANO, M., SELLIS, T., AND TSAI, P.-W. 2018. A Trajectory Calculus for Qualitative Spatial Reasoning Using Answer Set Programming. Theory and Practice of Logic Programming 18,3-4, 355–371.
- DYLLA, F., LEE, J. H., MOSSAKOWSKI, T., SCHNEIDER, T., VANDELDEN, A., VAN DE VEN, J., AND WOLTER, D. 2017. A Survey of Qualitative Spatial and Temporal Calculi: Algebraic and Computational Properties. ACM Comput. Surv. 50,1, 7:1–7:39.
- MARTÍNEZ-MARTÍN, E., ESCRIG, M. T., AND DEL POBIL, A. P. 2012. A general qualitative spatiotemporal model based on intervals. J. UCS 18, 10, 1343–1378.
- VAN DE WEGHE, N., COHN, A. G., DE TRE, G., AND DE MAEYER, P. 2006. A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics 35, 1, 97–119.

