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Thesis Context

Predictive policing -> goal of preventing crime, solving past crimes, and

identifying potential offenders and victims. (Perry et al. 2013)

Social media mining -> process to extract patterns, form conclusions about
users, and act upon the information, often for the purpose of advertising to users or

conducting research. (Zafarani et al. 2014)

Space and time!




Environmental criminology

important theoretical foundation for exploring spatial crime distribution (Bruinsma and
Johnson, 2018).

Routine Activity Theory 1979 Crime Pattern Theory 1981

Key concepts: crime attractors, generators and detractors
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Research gap

Kurland, Tilley and Johnson (2014)
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Research Objective (RO) 1: Uncover relationships between crime patterns and

social media posts

RQ1: Does social media activity (i.e., tweets) correlate in space and time with crime

occurrences?

RQ2: Do different crime types show distinct relationships with tweet-related

features?

RQ3: Does the distribution of social media posts follow the changes in urban crime

patterns when a sporting event occurs?



DD D D D D

Objectives

Research Objective (RO) 2: Improve methods for integrating social media data

into crime prediction models

RQ4: Do geo-located tweets improve crime prediction models and enrich the

information coming from historical crime data and additional explanatory variables?

RQ5: Can tweets be a factor for determining at-risk populations?

RQ6: Does the use of social media as a dynamic feature have a higher relevance

in prediction models related to non-routine activities, rather than ordinary ones?
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Data (pre) processing flow

study area

home/away
game days vs
control days

environmental,
demographic,
socio-
economic

Explanatory
models

crime types

8-hours time
frame; 24-
hours time
frame

Twitter-related
features

Prediction
models
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Tweet-related features

—  polarity;

emotions
(feelings).

sporting
events;

violent
topics.

ambient
population;

complement
residential

population.

optimism _ _ -

-
-

contempt %,
‘\
N
boredom d
.
...

~o -

remorse =~ disapproval

Plutchick’s wheel of emotions

Plutchik
(2001)
lexicon
based:;
a mixed
approaches.
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RO 1: Uncover relationships between crime
patterns and social media posts

Methods: spatial autocorrelation Moran’s |, bivariate autocorrelation, Pearson
correlation, density mapping, comparison between game days and control days,

sentiment analysis, topic modeling, crime-related text extraction.

12
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RO 1 -> RQ1
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Control days
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RO 1->RQ2

P2
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Saturday crime intencity (%)

sunday crimeintencity (%)
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RO1 -> RQ1

Game days

Control days
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RO 1 -> RQ2 o
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RO 2: Improve methods for integrating social
media data into crime prediction models

Methods: Geographically Weighted Regression (GWR), Negative Binomial
Regression (NBLR), Logistic Regression, Random Forest, (Local) Kernel

Density Estimation (LKDE and KDE), density weighted areal interpolation.

20
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Predicting crime types

RO 2 -> RQ6 7
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Game days vs control days prediction

RO 2 -> RQ6
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Controversial result

RO 2 -> RQ6
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Density weighted areal interpolation technique

RO 2 -> RQ5

Residential population =
consists on residents who
permanently stay in an area
for a considerable amount of
time and are part of the

official population count;

Ambient population =
refers to the actual number
of persons who are present
within a particular area at

any given time.
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RO 2 -> RQ5
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Discussion

Explaining relationships

Data characteristics

Event routine activity

Need of control variables

Fan behavior

Significant crime-crime tweets relationship

Population at crime risk

Prediction day vs training data

Data quality: social media bias and geo-location

Geo-privacy for crime data

MAUP and temporal unit selection

Data sparsity: negative-positive ratio

Transferability

Differences per crime types/culture/country

28



Scientific contribution

e emerging field of predictive analytics;

e (geography of crime for sporting events;

e collaboration based - highly interdisciplinary outcomes;

e evaluating significance of social media features in prediction models;

e spatial hot spots and cold spots analysis;

e text analysis in the space-time view.

29
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Future directions of research

- real time crime prediction;

-dynamic spatiotemporal
features in prediction;

- testing novel
spatiotemporal performance
evaluation.

- hot spots vs cold spots;
- ambient population;

- subjective safety perception
Vs objective crime.

Applications: crime prevention strategies and law enforcement, policy makers, law

enforcement, urban design for events, crime safety regulations, sports analytics.

30



PART 2. Applying Geospatial

Technology to Explore Urban Blight

and Perceived Safety

Background

Scope

Data and Geospatial Technologies;
Results;

Relevance;

Future work.

Collaborators: Michael Leitner, Judith
Stratman, Bernd Resch, Kalliopi
Kyriakou
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Broken Windows Theory

-~

SMALL =
VANDALISM

Kelling and Wilson (1982) DECAY CRIM

It states that “visible signs of crime, anti-social behavior, and civil disorder create an

urban environment that encourages further crime and disorder, including serious crimes”
=>» great debate in criminology and not only!!!

Disorder Citizens Informal social Disorder
goes —» become —» control decreases [——» and crime
untreated fearful and and/or is increase as
withdraw perceived to be criminals
from the low by criminals increase
community their
activity in
the area

Broken windows effect (Hinkle and Weisburd 2008)
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Motivation and goals

® Identifying physical urban blight indicators and find correlations with crime

data;

® Applying new methods to observe urban neighborhood characteristics and

to include qualitative data into a GIS;

¢ Extracting safety information from the data acquired using mixed methods

and to implement it in a GIS.

As a long-term outcome, we would like to
contribute to improving citizen’s cooperation with
official stakeholders and help to design crime
prevention strategies

33



Data &
Methods

Study area

East Baton Rouge Parish
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Study area

Neighborhood Selection

" ®OpenStreetMap (and) contributors, CCBY-5A
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Methodology. Pre-analysis for field work

Spatial unit selection: neighborhood for field selection, Census blocks for

interpretation;

Defining categories: very high, high, moderate, low, very low crime rates;

Data &
Methods

Selection criteria: no highway; no lakes; connectivity; similar length of street

network

Determining the shortest path for driving in the neighborhood,;

;;;;;;;
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Methodology. Data acquisition

Primary data collection:

® Survey: background questionnaire and on-screen mapping;
® Spatial video acquisition system (SVAS);

® Geonarratives;

® Physiological measurements using wristbands;
Secondary data collection:

® Crime data;

® Additional: socio-demographic and environmental data.

37



Data &
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(1) Spatial video acquisition system (SVAS)

e additional technique to GIS to improve the documentation and analysis;

e unlike Google Street View, SVAS data collection is in the control of the
researcher;

e spatial video can be collected using a variety of modes (car, motorbike,

bicycle, boat and by foot);
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(2) Geonarratives

e (gives contextual details and enriches typical hotpot approaches with more on-
the-ground context;

e audio recording of this narrative is linked to the video via timestamp;

e multiple perspectives for the same geographic area;
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Data &
Methods

(3) Physiological measurements - wristbands

e tool for capturing people’s subconscious reactions to environmental stimuli;

e add contextualizing information to observed phenomena,;

e can complement videos and narratives;

Heart Iiat_é i
Skin conductivity

Source: www.empatica.com
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(4) Crime, socio-economic, demographic data

e Baton Rouge Police Department (BRPD) including coordinates and time

stamps of crime occurrences;

e Census data: residential population, ethnicity, education, household types,

foreign born, unemployment, poverty rate;

e Environmental data: street network, buildings footprint, public buildings,

neighborhoods, etc.

41
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Methodology. Data processing

Processing tools:

e Videoplayer with integrated
GPS track and

e WordMapper (developed by
Prof. Andrew Curtis and his

team)

Analysis tools:
e R programming for statistical
analysis

e GIS software for mapping

Video files (GPS, time
stamp UTC, memory
time)

Audio files (memory
time)

ing (timestamp)
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Results

Urban
blight
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Some numbers...
Urban blight distribution

S

69% environmental/
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blight locations
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= Mid City
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Spatial video Geo-narratives
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Density maps
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Density maps
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Abandoned properties

Density maps g 0
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Criminal damageto property

Density maps
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Criminal damageto property

Density maps
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Density of blight indicators per census block group
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Researchers: Battling blight in Baton Rouge can play a key role in
fighting crime

BY LEA SKENE | LSKENEGTHEADVOCATE.COM FEB 23, 2019 - 5:44 PM

FOLLOW US

2
“Her grandson was shot and killed — | i"
in a 2015 triple homicide outside ’
the B's Seafood convenience store
about a block from her house — the ' W A
same place her nephew was -

gunned down less than two years
later.” P4



LSU study shows link between blighted property and homicide in Baton Rouge

The Blight Strike Team demolishing an abandoned property in East Baton Rouge Parish

By Danae Leake | February 11, 2019 at 10:44 AM CST - Updated February 11 at 10:44 AM
BATON ROUGE, LA (WAFB) - A new LSU study shows a link between homicide, blighted property and

convenience stores in Baton Rouge.

Media Center

News Releases
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Latest LSU study ties Blight to Homicides

18th February 2019 + © Comments

By Fritz Esker
Contributing Writer
A new study led by LSU Department of Sociology Assistant Professor Matthew Valasik showed a statistical connection

between homicide and blighted buildings and convenience stores in Baton Rouge.

The study began as a group project in Valasik's crime mapping class. Stephen Martinez, Valasik's student and co-author of
the study, was interested in searching for data on whether or not murders were clustered near certain tvpes of buildings. The
praoject looked at homicides in Baton Rouge occurring in 2016.

New Study Linking Blight and Homicide May Help
Predict Where Murder May Occur

02/08/2019

BATOMN ROUGE - A new study led by LSU Department of Sociology Assistant Professor Matthew Valasik is the first to show a statistical
connection between homicide, blighted buildings and convenience stores in Baton Rouge. Valasik, doctoral candidate in sociology
Elizabeth Brault and his former student Stephen Martinez, who is now an investigator in the East Baton Rouge District Attorney’s office
looked at where homicides occurred in the city in 2016. They found that nearly 25 percent of homicides in Baton Rouge take place within

the same areas that comprise about 3 percent of the city.
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Results

Geonarratives route

N
Route for geo-narrative data collection A Commentary and feelings during geonarrative drive - student
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Sentiment analysis
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Hot Spot of Moments of Stress
‘ . i ; T Cold Spot - 99% conf.
S ' SR I S Cold Spot - 95% conf.
— ; ‘A Il Cold Spot - 90% conf.
Il Not Significant
I Hot Spot - 90% conf.
Hot Spot - 95% conf.
Hot Spot - 99% conf.




Relevance

e New geospatial technology as a methodology to improve the identification

of crime-related variables and to explore urban safety;

e I|dentify physical urban blight indicators on a micro-scale;

e Collect contextual information in a standardized way and in a format that
can be archived, so that they can be used in long term and comparative

studies;

e Security improvements and enhancement of quality of life in Baton

Rouge.
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Future work

e Machine learning algorithms for image recognition;

e Automation of transcripts;

e Integration of UAV’s to record multiple facades of the property;

e Crime prediction models by including newly extracted information;

e Social media text analysis based on crime perception;
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Join this event! Free registration!

The 2020 BARI Conference,
Reimagined

Opening Keynote: The Other Impacts of Corona

Week 2: Co-Creation: Designing Together for Better
Outcomes

Week 3: Collaboratively Building Climate Resilience

dgj LU AT @

N8 THE SMART, EQUITRBLE %
ﬁ COMMONWERLTH 1

Co-Creating the Society We Want

! Week 4: Supporting the Vulnerable Few

Week 5 Keynote: Boston Innovation: Past Present and
Future with Paul Grogan and Friends

ﬁ ,

Week 6: Strengthening the Commonwealth through
Cross-Municipal Collaboration

Week 7. Making Housing in Greater Boston Work for
. Ewveryone

\ |, Week & Supporting Greater Boston's Youth
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https://cssh.northeastern.edu/bostonarearesearchinitiative/spring-conference-2020/

