Toward contrastive (and other types of) explanations in GeoAl

Ben Adams
University of Canterbury
New Zealand

WELLBEING BUDGET 2020

REBUILDING TOGETHER

BUDGET **2020**

14 May 2020

StatsNZ 133 wellbeing indicators

- **Environment** (air quality, cities and settlements, climate, water and sanitation, cultural ecosystem services, ...)
- Cultural (sense of belonging, language development, ...)
- Economic (child poverty, income, ...)
- Social (corruption, health equity, justice equity, ...)
- Contextual (migration, population distributions, ...)

StatsNZ 133 wellbeing indicators

- High-frequency sensors
- (social, environmental, ...)
- Economic (chipperty in come)
 Social (corruption, health equity, justice equity, ...)
 Context Spatiotemporal data

Toward a wellbeing sensor network?

Prime candidate for GeoAl technologies

 Indicators will be used for decision making around government funding and policy

• Models must be explainable to non-technical people

Algorithm Charter for Aotearoa New Zealand

- Transparency
- Partnership
- People
- Data
- Privacy, Ethics and Human Rights
- Human oversight

New Zealand Government

https://data.govt.nz/use-data/data-ethics/government-algorithm-transparency-and-accountability/algorithm-charter

Outline

- Historical context of explanatory AI for geography
- Explainable AI (XAI) and Explanation in AI
- Important types of explanations
- Bringing more explanatory Al into GeoAl

Some context

 "There is a growing and increasingly urgent need for a major new revolution in the provision of smart tools able to make good and optimal use of the geographic information that now exists."

Some context

- "There is a growing and increasingly urgent need for a major new revolution in the provision of smart tools able to make good and optimal use of the geographic information that now exists."
- Openshaw & Openshaw, Artificial Intelligence in Geography, 1997
 (23 years ago!)

Some more context

 "Al techniques, if properly applied, should also allow researchers to spend a greater proportion of their time on creative thinking and less on technical drudgery. As with any set of tools, the techniques of Al cannot replace a hard-earned understanding of some phenomenon and will almost certainly be overvalued and misused by some practitioners."

Some more context

- "Al techniques, if properly applied, should also allow researchers to spend a greater proportion of their time on creative thinking and less on technical drudgery. As with any set of tools, the techniques of Al cannot replace a hard-earned understanding of some phenomenon and will almost certainly be overvalued and misused by some practitioners."
- Terry Smith, "Artificial intelligence and its applicability to geographical problem solving" 1984 (36 years ago!)

3 applications of AI to geographic problem solving (Smith, 1984)

Explanation

Engineering

Teaching

What about GeoAl?

GeoAl currently driven by deep learning research

Most work to date falls in the category of Engineering

• Is prediction is enough?

Discovery of explanatory models (Gahegan 2020)

Gahegan, M. (2020). Fourth paradigm GIScience? Prospects for automated discovery and explanation from data. *International Journal of Geographical Information Science*, 34(1), 1-21.

Different types of explanatory Al

- Explanation a la Smith (1984) and Gahegan (2020)
- Explainable AI (XAI) (Biran & Cotton 2017)
- Explanation in AI (Miller 2019)

Explanation - 4 Key Findings (Miller 2019)

- Explanations are contrastive
- Explanations are selected
- Probabilities probably don't matter
- Explanations are social

Explanations are contextual.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. *Artificial Intelligence*, 267, 1-38.

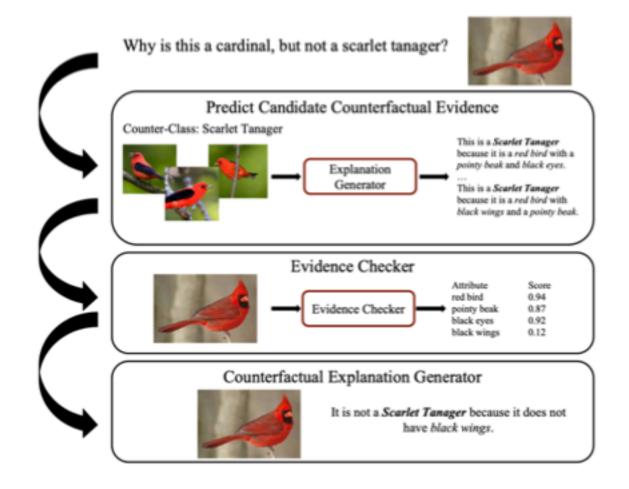
Contrastive explanation

 Explaining the cause of an event relative to some other event.

Why event P (fact) happened instead of some event Q (foil).

• These are counterfactual outcomes, not causes.

Counterfactual (contrastive) explanations

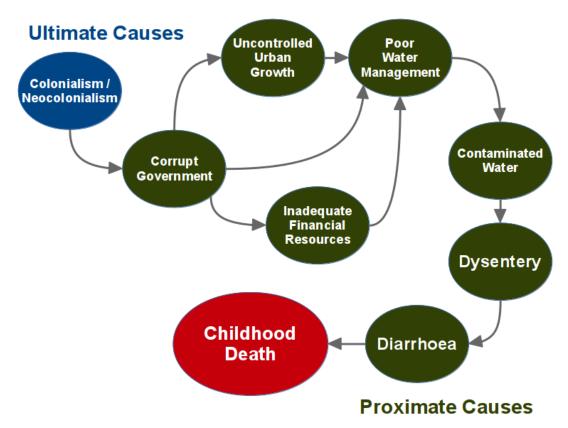


Hendricks, L.A., et al. 2018 "Generating Counterfactual Explanations with Natural Language"

4 types of explanatory questions

(Van Bouwel and Weber, 2002)

• Type 1, **Plain fact**: Why does object a have property P?

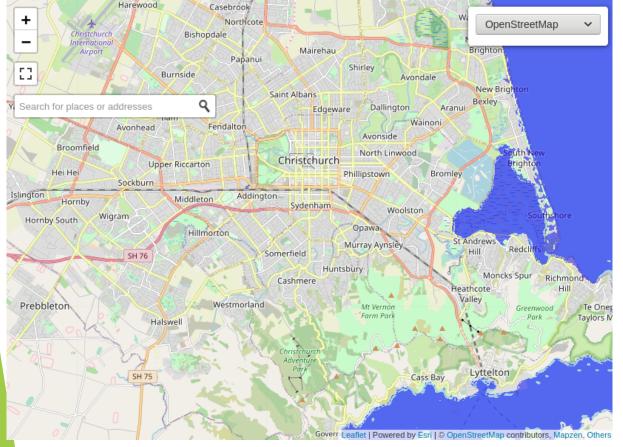


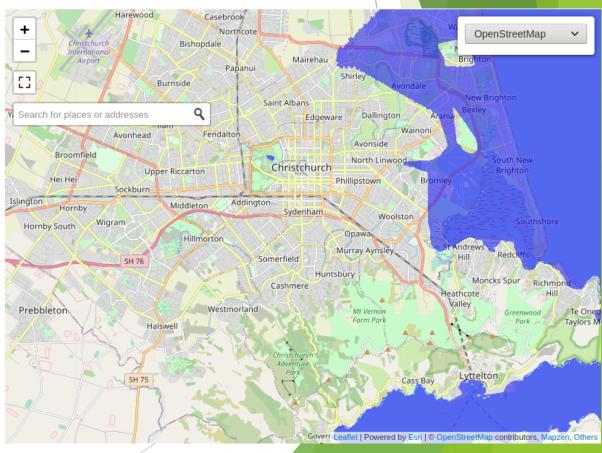
Van Bouwel, J., & Weber, E. (2002). Remote causes, bad explanations?. J. for the Th. of Soc. Beh., 32(4), 437-449. Graph from http://michaelminn.net/tutorials/correlation/

4 types of explanatory questions

(Van Bouwel and Weber, 2002)

 Type 2, P-contrast: Why does object a have property P, rather than property Q?



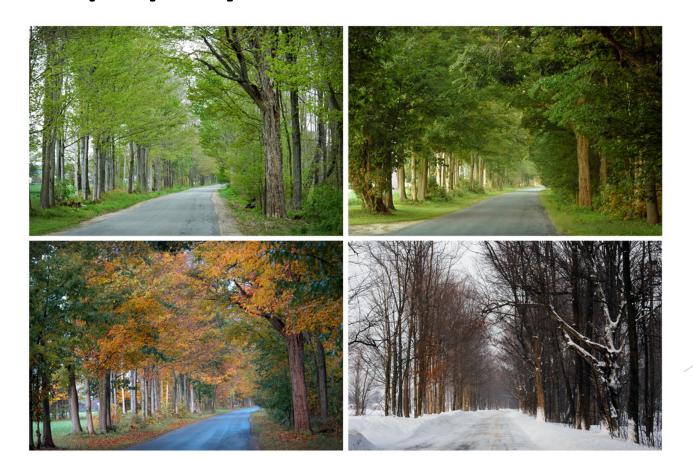


4 types of explanatory questions (Van Bouwel and Weber, 2002)

• Type 3, O-contrast: Why does object a have property P, while object b has property Q?

4 types of explanatory questions (Van Bouwel and Weber, 2002)

• Type 4, T-contrast: Why does object a have property P at time t, but property Q at time t'?



Benefits of contrastive explanation

Easier to generate than complete explanations

Lay people find them more intuitive

Pitched at the appropriate 'level of explanation'

Different types of explanations

Functional explanations

- Phenomena that have dependence relations
- Derived from functions or goals

Mechanistic explanations

- Physical phenomena
- Derived from parts or processes
- Geographic phenomena can have both!

T. Lombrozo (2010) Causal-explanatory pluralism: how intentions, functions, and mechanisms influence causal ascriptions. *Cogn. Psychol.* 61(4), 303-332.

Workshop submissions

- Spatially-explicit population projections
- Forecasting criminogenic environments
- Greenspace and academic performance
- Travel behavior

All extremely relevant to measuring wellbeing!

Workshop submissions

- Spatially-explicit population projections
- Forecasting criminogenic environments
- Greenspace and academic performance
- Travel behavior

- Emphasize predictive capability.
- Discuss explanation by looking at counterfactual causes, not effects.
- But why do the models make the predictions that they do?

What could contrastive explanations look like for **Population projection**?

– The paper describes some contrasts in the cause:

"Do housing choices differ between migrants and native-born?"

- Answered by looking at the output of the model
- Contrasts in the effect help to understand how the model works.

"Why does the model show migrants settling in one neighborhood but not another?"

What could contrastive explanations look like for Forecasting criminogenic environments?

- The paper says the machine learning may "generate more accurate forecasts than more traditional statistical models"
- Also, focuses on contrasts in the cause:
- "... generate a counterfactual for what would have occurred in the absence of COVID-19 and the associated stringencies."
- Contrasts in the effect, e.g.:

"Why does the model show an increase in crime in one environment but not another in the absence of COVID-19?"

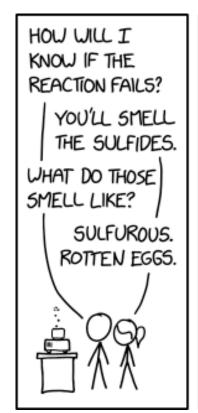
Explanation selection

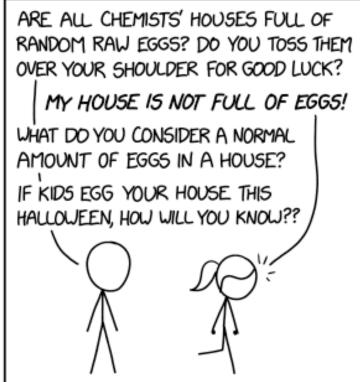
- From the many possible causes of an event how is one selected as the explanation?
 - Simulating counterfactuals useful to derive an explanation.
 - What events to mutate when simulating?
 - Need biases (biases can be good!)

How do we evaluate the explanation that is given?

Social explanation

- Conversational GeoAl agents
- Interactive explanation





Questions to ask ourselves about GeoAl

- Are we evaluating contributions in GeoAl in the best way?
 - Is machine learning model evaluation sufficient?
 - Other standards for success based on model usability?

 Are we starting with geographic problems needing to be solved and thinking about the everyday use of the model?

 Who needs to understand the models we are building and why?

More questions

• What kinds of explanations do people need from the models we build? (functional, mechanistic, etc.)

• What are the biases that we should use to select counterfactuals?

 What kinds of interaction is most useful in explanatory Al systems for Geography?

Conclusions

- GeoAl is not a new field
- Wellbeing sensor network as a grand challenge
- Start with who will be making decisions based on the model
- Creating tools that explain GeoAI models to those users
 - Use contrastive explanations
 - Understand selective bias to find relevant explanations
 - Utilize interaction and conversational modes

Closing quote

- "As a geographer, your interest in AI should be purely to serve your geographical concerns. ... If you become a general expert in AI and forget all about your geography, then you will almost certainly fail to do anything useful in a geographical context with your AI skills."
 - Openshaw & Openshaw 1997

Thank you!

Questions? / thoughts

(or explanations?)