Julien Brun is a Scientific Programmer at NCEAS, where he supports and advises scientists on data modeling, data analysis and data preservation. He is also involved in NCEAS data science training activities promoting scientific programming and open science best practices to environmental experts and scientists. He is member of the science advisory council of the Science for Nature and People Partnership (http://snappartnership.net/), a partnership between NCEAS, the nature conservancy (TNC) and the wildlife conservation society (WCS).

Julien’s scientific background is in ecohydrology, remote sensing and process-based models. Prior his PhD on the ecohydrological impacts of tropical cyclones in the Southeastern US, he conducted several projects on land cover change, vegetation monitoring and disaster mapping for governmental and international institutions.

Perspective

Space provides a universal reference for any act of observation or measurement, such that an observation’s location and spatial extent comprise a “key” to relate it with other spatially referenced objects, helping identify shared attributes or infer causal connections by providing context. Spatial characteristics of an object are therefore a powerful way to discover and link heterogeneous data. Although the mathematical expression of a geolocation on Earth is defined in various well-established ways, the storage of this information in standardized and interoperable metadata formats is still a challenge for data discovery across various data archives. Web technologies and standards should provide inspiration and maybe solutions to tackle these interoperability challenges.

When thinking about spatial discovery, there are several different types of spatial search that come to mind. For example, the geolocation based discovery mentioned above: it can be based on latitude and longitude of a coordinate system, but it can also be based on names of spatially well-defined locations or areas (e.g., administrative boundaries), as well as fuzzier (e.g., neighborhood) or ambiguous (e.g., different locations with same name) spatial concepts. Another example of spatial discovery could be a user wanting to search for data using a spatial relationship in regards to another spatial entity, such as “close by” or “within”. I personally think an important challenge of spatial discovery is to enable all the different types of spatial data search one could want to do, while integrating the variable accuracy of the concepts used to conduct the research, the potential hierarchical relationships among these spatial concepts, as well as their variability in time (e.g., changes in species distribution).