Abstract: Geometry is intuitively associated with spatial ability. Consequently, ongoing efforts to explain why US students are less likely to do well in geometry compared to other areas of mathematics draw attention to how spatial ability differentially influences problem solving performance. Research on spatial cognition suggests that differences in how individuals construct and use visual images determine the likelihood for successful solution attempts. That is, some individuals are prone to visualizing holistic images (e.g., pictures of objects) that depict overall shape and size. In contrast, other individuals tend to construct images part by part to arrange and analyze the components in relation to what a problem requires. In this presentation, we will discuss a recent study that examined geometric problem solving by high school students with different spatial orientations. In short, students with strong spatial visualization skills, compared to those identified as average or low, earned higher grades in geometry and scored significantly higher on a geometry test developed for the purpose of this study. We will also discuss the implications of this work for improving student geometric problem solving. Our approach incorporates teaching strategies that encourage students to focus on relevant spatial information in geometric problems.

Lisa Weckbacher is a faculty member of the Child and Adolescent Development Department at CSUN. She earned her Ph.D. in education with an emphasis in child and adolescent development from UCSB in 2007. Dr. Weckbacher also holds three master’s degrees that branch into different areas of psychology and education. Her research interests largely pertain to the role of spatial ability in problem solving situations (particularly geometry), and how strength in spatial ability relates to differences in mathematics achievement. A recent focus involves educating elementary school teachers on helping their students develop an awareness and use of spatial ability as a problem-solving tool across a variety of classroom contexts.

Yukari Okamoto is a faculty member of the Department of Education at the Gevirtz Graduate School of Education at UCSB. She earned her Ph.D. in psychological studies in education from Stanford University in 1992. Dr. Okamoto is a developmental psychologist who is interested in cross-cultural differences in children’s thinking, in particular, in the domains of mathematical, scientific and spatial thinking. From a neo-Piagetian perspective, she studies children’s conceptual development, provides instructional programs, and examines the question of culture and the developing mind. She was also a member of the TIMSS Video Study of math and science teaching practices in Australia, Chez Republic, Germany and Japan.

The objectives of the ThinkSpatial brown-bag presentations are to exchange ideas about spatial perspectives in research and teaching, to broaden communication and cooperation across disciplines among faculty and graduate students, and to encourage the sharing of tools and concepts. Please contact Don Janelle (ext 5267, janelle@spatial.ucsb.edu) to review and schedule possible discussion topics or presentations that share your disciplinary interest in spatial thinking.